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Abstract

In this write-up, we detail our method for computing the stochastic guarantees on the hold-
ing force of electro-permanent magnets (EPMs) in a self-rearranging robotic lattice system. We
derive the reliability-based design optimization (RBDO) formulation, the lattice geometry con-
straints (using a triangular mesh decomposition), and the steps we took to numerically solve for
the necessary force margins under manufacturing and operational uncertainties.

1 Introduction

Our self-rearranging robotic system relies on a network of nodes and edges with embedded electro-
permanent magnets (EPMs). Each node contains power and actuation elements, and each edge
can rotate, extend, and flex. The magnets must hold the system together robustly in the presence
of uncertain manufacturing tolerances, environmental factors, and motor torque demands.

To guarantee that these magnets can reliably hold even under unknown loads, we developed
a stochastic design-optimization framework. In particular, we imposed reliability constraints to
ensure that the forces generated by the magnets meet or exceed the required holding forces with
high probability.

2 Lattice Model: Composite Triangular Mesh

Consider a lattice comprised of N nodes and E edges, each edge having an EPM connection at both
ends. To capture the load paths, we model the lattice as a triangular mesh, where each triangle is
formed by three edges and three nodes. Define a set of triangles:

T = {△1,△2, . . . ,△T },

with T denoting the total number of triangles. Each △i is a set of nodes (n1, n2, n3) and edges
connecting them.

We let Fi be the vector of internal forces in triangle i due to tension or compression in its edges.
If q ∈ R2N (or R3N in 3D) is the collection of node positions, then the force-balance equations at
every node nj take the form: ∑

i :nj∈△i

Fi(q,ω) − Wj(ω) = 0, (1)

where Wj(ω) is the (random) weight and external load at node nj . These loads arise from battery
mass, motor torque, payload, etc., all subject to uncertainty ω.

To remain connected and stable, each magnet in the lattice must provide a holding force suffi-
cient to prevent any edge from failing under these nodal loads.

1



3 Stochastic Reliability Formulation

3.1 Design Variables

Let x ∈ Rd be our design vector specifying magnet attributes:

x =


N
I
dc
lc
...

 ,

where N is the number of coil windings, I is the coil current (for magnetization/demagnetization),
and dc, lc characterize coil geometry (diameter/length). Additional parameters (magnet material
constants, enclosure dimensions) may also be included.

3.2 Random Variables

We define ω as a vector of random parameters capturing uncertainties in:

ω =
[
Mn, Me, Tm, f, . . .

]
,

where Mn,Me are node/edge masses, Tm is motor torque or torque requirements, and f may be
friction or alignment uncertainties. All of these distributions can be empirically derived or estimated
from manufacturing data.

3.3 Magnet Force Model

Let Fmag(x,ω) be the resulting holding force of a single magnet. A simplified form might be:

Fmag(x,ω) = α(ω)κN I
Ac

l2c
− δ(ω), (2)

where κ is a constant involving material permeability, Ac is coil cross-sectional area, α(ω) captures
misalignment or partial contact effects, and δ(ω) represents further random losses.

3.4 Required Lattice Holding Force

The required force Lreq(ω) for an EPM (on any given edge) depends on the total load that edge
must sustain in the triangular mesh. Denote by Lreq,i(ω) the force required to keep triangle i intact.
This might be computed via:

Lreq,i(ω) = φi

(
Fi(q,ω)

)
, (3)

where φi(·) is a scalar measure of tension or compression in edges associated with triangle i. To
ensure all triangles remain stable, we require:

Fmag(x,ω) ≥ max
i∈T

Lreq,i(ω) = Lreq(ω). (4)

In many cases, we take the worst-case triangle load from among the T triangles as the critical load
for the magnet design.
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3.5 Reliability Constraint

Our central reliability condition is:

P
[
Fmag(x,ω) ≥ Lreq(ω)

]
≥ 1− α, (5)

where α is the acceptable probability of failure (e.g., α = 0.01). Equivalently, we define a limit-state
function:

G(x,ω) = Fmag(x,ω) − Lreq(ω), (6)

and require
P
[
G(x,ω) ≥ 0

]
≥ 1− α.

4 Deterministic Constraints and Objective

We also impose:

dc ≤ dmax, lc ≤ lmax, (7)

Pcoil(N, I) = I2R(N) ≤ Pmax, (8)

mEPM(x) ≤ mmax, (9)

reflecting physical geometry, power limits, and mass constraints.
We then aim to minimize some cost function:

min
x

mEPM(x) or min
x

[
β1mEPM(x) + β2 Pcoil(N, I)

]
, (10)

subject to the reliability constraint in (5) and all deterministic constraints.

5 Solution Strategy

We solve the above as a reliability-based design optimization (RBDO) problem:

min
x

mEPM(x)

subject to P
[
G(x,ω) ≥ 0

]
≥ 1− α, (11)

dc ≤ dmax, lc ≤ lmax, Pcoil(N, I) ≤ Pmax,

x ∈ X ,

where X is our feasible design set.

5.1 Monte Carlo Sample-Average Approximation

A common approach is to approximate the probability constraint via sampling:

• Draw K samples ω1, . . . ,ωK from the distribution of ω.

• Define G(x,ωk) for k = 1, . . . ,K.
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• Approximate the failure probability as

p̂(x) =
1

K

K∑
k=1

1
[
G(x,ωk) < 0

]
.

• Impose p̂(x) ≤ α in place of the exact probability.

We then iteratively adjust x to meet this approximate constraint while minimizing mEPM(x).

5.2 FORM, SORM, or Surrogate Methods

If G(·,ω) is smooth and partially analytic, we can employ known reliability methods instead:

• First-Order Reliability Method (FORM): Finds the most probable point (MPP) of
failure and linearizes G around it.

• Second-Order Reliability Method (SORM): Incorporates curvature in G.

• Surrogate / Polynomial Chaos: Builds an approximate model of G and performs relia-
bility analysis on that surrogate.

6 Conclusion

By systematically incorporating the triangular lattice mechanics and uncertain parameters, we
arrived at a stochastic guarantee on magnet holding force. The resulting design ensures:

P
[
Fmag(x,ω) ≥ max

i
Lreq,i(ω)

]
≥ 1− α.

This condition provides high-confidence that the self-rearranging robotic structure will remain
intact under real-world loads, friction, misalignments, and motor torques. At the same time, we
minimize mass or power usage, enabling each node to remain as light and energy-efficient as possible.

4


