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Background and Rationale 
 In the fields of orthotic and prosthesis development, a major bottleneck is in the gathering 
of novel datasets from relevant subjects, as there is generally a high scarcity level associated with 
individuals of a specific disability. This results in an unhealthy reliance on datasets gathered 
from able-bodied subjects and an overreliance on a small collection of datasets gathered from 
amputees or similarly disabled individuals. Thus, in order to expedite the development stages of 
assistive mechanisms, it becomes imperative to find a method to artificially expand a small 
collection of datasets gathered from a relevant group of individuals into a large, yet still novel, 
collection. 
 In the current state of biomechanical research, there is a heavy reliance on data science-
driven solutions, which generally entail designing and training machine learning algorithms to 
execute and/or predict motion according to sensor data. To this end, user intent recognition has 
become a prominent aspect of prosthesis control, resulting in the implementation of feature-
based (features being derived from sensor readings) and, presumably, soon to be time series-
based models. This transition between basic and deep learning in the field is a main motivator in 
searching for effective data synthesis solutions since deeper models have been shown to require 
significantly more training data. 
 In order to attain additional training data for the development of these models, we can 
either augment our data with new features derived from those which already exist or we can 
synthesize entirely new datasets based on trends found in real-life trials. The former option, 
although likely safe from outputting many outliers which would skew models, has been shown in 
image processing applications to generally only improve model accuracy marginally. On the 
other hand, there have been several promising developments in data synthesis both for feature 
and time series datasets made using generative adversarial networks (GANs) and variational 
autoencoders (VAEs). 
 The basic architecture of GANs models consists of one model attempting to replicate 
novel data from a set of existing data, in this case, the sensor data, and a model attempting to 
discriminate between real and synthesized data. Through these two models’ competition, the 
synthesizing model becomes progressively more accurate; however, in order to reach a realistic 
threshold, a great amount of existing data must be provided, which is a potential roadblock in 
this application. VAEs attempt to encode a signal into a smaller (latent) space and then decode 
from there to produce a similar signal. This model requires far less training data, but has been 
shown to be less effective in data synthesis than GANs models. An additional benefit of VAEs is 
that when encoding the signal, they have the potential to find hidden features that define the gait 
data. Thus, after decoding, the final synthesized signal may represent these features heavily and 
thereby inform the model it is eventually training in a more meaningful way than regular (more 
noisy) signals would. 
 
Results 
Dataset and Preprocessing. 
 In this research, I used an open source dataset developed by Jonathan Camacho and Blair 
Hu, from which I extracted all biomechanical data channels from each subject, as shown in fig. 
1a. However, after preliminary results from the ML models, it became apparent that many strides 
and channels lacked associated data signals, which was handled by removing these from the 



datasets. Additionally, it became necessary to normalize both the length of each stride and 
amplitude of the given sensor channels, at least initially, in order to effectively train the models. 
Thus, we attain example data signals shown in fig. 1b. 
 

 
Figure 1a. Initial biomechanical data for example subject. 1b. Preprocessed data signals. 

 
Machine Learning Approaches. 
 I began with developing the GAN model, as it seemed the most promising through 
literature review. I defined both the discriminator and generator models using two dense layers, 
with an Adam optimizer and binary cross entropy loss functions. Using 10000 epochs, the model 
failed to generate any reasonable results (the training process is shown in fig. 2). 

 
Figure 2. GAN training results at epochs 1000, 5000, and 10000. 

 My second approach was using a VAE, using a latent space of dimension 10. 
Unfortunately, the results seemed similar to the GAN model, as shown in fig. 3. I used 128 nodes 
in the hidden layer and a binary cross entropy loss function. Despite tuning the hyperparameters 
of the model, it did not improve. 

 
Figure 3. VAE training results at epochs 1000, 5000, and 10000. 

 
Conclusion 
 Using these two machine learning approaches did not yield reasonable results. I believe 
this is due to the high dimensionality of biomechanical signals for nearly all joint motion in 
question and is not able to be captured by ML-based models without copious amounts of training 
data. As seen in the figures above, the generated data seem to capture the initial linear direction 
of the signals, supporting the idea that the dimensionality is the issue. 


