
Introduction – Deep Tube MPC
• We generally use a simplified model of system dynamics/kinematics 

to plan trajectories through environments.
• The real robot cannot follow these paths precisely, which results in 

an error between the tracking system and the planning system.
• To safely navigate environments with obstacles, we must take this 

error into account while generating trajectories.

From FaSTrack (‘17)



Introduction – Deep Tube MPC
• Prior Work

• FaSTrack (‘17, ‘21): produces safety guarantees based on HJ reachability 
analysis, precomputing a tracking error & safety control function offline.
• HJB must be solved over the state space, which is the same dimensionality as the 

system. Thus, the curse of dimensionality applies.
• DL Tubes for Tube MPC (‘20): learns the distribution of MPC-derived 

trajectories in closed-loop to generate stochastic bounds recursively.
• Tubes must grow throughout trajectory if using high confidence levels.
• Lacks the ability to gather large-scale data for effective learning approach.

• Problem
• The tracking system’s high-dimensionality makes it infeasible to directly 

compute this error in planning.
• Learning approaches can’t produce guarantees with high confidence levels.



Introduction – RL 
Trajectory Tracking
• To explore tubes, we need an 

environment that relates a 
planning and tracking model.

• Recently, many papers have used 
RL in simulation to synthesize 
velocity-based walking controllers.
• Cassie paper (‘24)
• Some of them focus on massive

parallelization (e.g., legged_gym)

From Learning to Walk in Minutes 
Using Massively Parallel Deep RL



Introduction – RL Trajectory Tracking

• Problem
• None of the approaches use massive parallelization to learn a trajectory-

based policy
• We found that PID-driven velocity controllers did not track paths well.
• We need to collect a large database 

of tracking error for different trajectories.
• We want to demonstrate sim-to-real 

on a robot in the lab – Hopper!
• Requires custom dynamic

models not supported.



Massively Parallelized RL Trajectory Tracking
 

- Trajectory Generation
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Principle Trajectories• Implemented ROMs
• Single Integrator – 𝑛: {𝑣𝑥 , 𝑣𝑦}
• Double Integrator
• Unicycle
• Lateral Unicycle
• Extended Unicycle
• Extended Lateral Unicycle
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Massively Parallelized RL Trajectory Tracking
 

- Curriculum Learning, Raibert Heuristic, Reference Trajectories

• For different robots, different rewards throughout 
training accelerate the learning process

• E.g., rewards for mimicking behavior of simplified 
models to kickstart walking movement

Raibert Heuristic

𝜓𝑟𝑜𝑙𝑙 = −𝐾𝑝𝑒𝑥 − 𝐾𝑣𝑒𝑣,𝑥

𝜓𝑝𝑖𝑡𝑐ℎ = −𝐾𝑝𝑒𝑦 − 𝐾𝑣𝑒𝑣,𝑦

(Hopper)

Reference Trajectories

(Adam)



Massively Parallelized RL Trajectory Tracking
 

- Results

Trajectory Tracking Policy

Original PD-Controlled
Velocity Policy



Massively Parallelized RL Trajectory Tracking
 

- Results

Learns to Stand

Robust Hopping



Demonstration
 

- Single Simulation, Sim-to-Sim
IsaacSim

(Anymal C)
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- Single Simulation, Sim-to-Sim
IsaacSim

(Cassie)
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(Hopper)
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- Single Simulation, Sim-to-Sim

IsaacSim

(Hopper)

Mujoco
Sim-to-Sim



Demonstration
 

- Sim-to-Real

(Hopper)

Sim-to-Real
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