Introduction — Deep Tube MPC

* We generally use a simplified model of system dynamics/kinematics
to plan trajectories through environments.

* The real robot cannot follow these paths precisely, which results in
an error between the tracking system and the planning system.

* To safely navigate environments with obstacles, we must take this
error into account while generating trajectories.

Tracking System
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Planning System

From FaSTrack (‘17)



Introduction — Deep Tube MPC

* Prior Work
 FaSTrack (17, ‘21). produces safety guarantees based on HJ reachability
analysis, precomputing a tracking error & safety control function offline.

* HJB must be solved over the state space, which is the same dimensionality as the
system. Thus, the curse of dimensionality applies.

DL Tubes for Tube MPC (‘20): learns the distribution of MPC-derived
trajectories in closed-loop to generate stochastic bounds recursively.
* Tubes must grow throughout trajectory if using high confidence levels.
* Lacks the ability to gather large-scale data for effective learning approach.

 Problem

* The tracking system’s high-dimensionality makes it infeasible to directly
compute this error in planning.

* Learning approaches can’t produce guarantees with high confidence levels.



Introduction — RL
Trajectory Tracking

* To explore tubes, we need an
environment that relates a
olanning and tracking model.

* Recently, many papers have used

RL in simulation to synthesize b

velocity-based walking controllers.

* Cassie paper (24)

« Some of them focus on massive
parallelization (e.g., legged_gym)

From Learning to Walk in Minutes

Using Massively Parallel Deep RL I
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Introduction — RL Trajectory Tracking

e Problem

* None of the approaches use massive parallelization to learn a trajectory-
based policy
* We found that PID-driven velocity controllers did not track paths well.

* We need to collect a large database
of tracking error for different trajectories. N

* We wantto demonstrate sim-to-real
on arobotin the lab - Hopper!

* Requires custom dynamic 28
models not supported.
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Massively Parallelized RL Trajectory Tracking

- Trajectory Generation

° lmplemented ROMs Principle Trajectories
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Massively Parallelized RL Trajectory Tracking

- Trajectory Generation

Principle Trajectories
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Massively Parallelized RL Trajectory Tracking

- Trajectory Generation
Principle Trajectories » Rand. Linear Combination
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Massively Parallelized RL Trajectory Tracking

- Trajectory Generation
Principle Trajectories » Rand. Linear Combination
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Massively Parallelized RL Trajectory Tracking

- Trajectory Generation

Principle Trajectories » Rand. Linear Combination
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Massively Parallelized RL Trajectory Tracking

- Curriculum Learning, Raibert Heuristic, Reference Trajectories

Reference Trajectories

* For different robots, different rewards throughout
training accelerate the learning process

* E.g., rewards for mimicking behavior of simplified
models to kickstart walking movement

Reward Weighting vs. Episode

Raibert Heuristic
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- Results
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Massively Parallelized RL Trajectory Tracking

- Results

Robust Hopping

Learns to Stand




Demonstration

- Single Simulation, Sim-to-Sim
IsaacSim

(Anymal C)



Demonstration

- Single Simulation, Sim-to-Sim
IsaacSim
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Demonstration

- Single Simulation, Sim-to-Sim
IsaacSim

(Hopper)



Demonstration

- Single Simulation, Sim-to-Sim

Sim-to-Sim
IsaacSim Mujoco

(Hopper)



Demonstration

- Sim-to-Real

Sim-to-Real

(Hopper)




	Slide 1: Introduction – Deep Tube MPC
	Slide 2: Introduction – Deep Tube MPC
	Slide 3: Introduction – RL  Trajectory Tracking
	Slide 4: Introduction – RL Trajectory Tracking
	Slide 5: Massively Parallelized RL Trajectory Tracking   - Trajectory Generation
	Slide 6: Massively Parallelized RL Trajectory Tracking   - Trajectory Generation
	Slide 7: Massively Parallelized RL Trajectory Tracking   - Trajectory Generation
	Slide 8: Massively Parallelized RL Trajectory Tracking   - Trajectory Generation
	Slide 9: Massively Parallelized RL Trajectory Tracking   - Trajectory Generation
	Slide 10: Massively Parallelized RL Trajectory Tracking   - Curriculum Learning, Raibert Heuristic, Reference Trajectories
	Slide 11: Massively Parallelized RL Trajectory Tracking   - Results
	Slide 12: Massively Parallelized RL Trajectory Tracking   - Results
	Slide 13: Demonstration   - Single Simulation, Sim-to-Sim
	Slide 14: Demonstration   - Single Simulation, Sim-to-Sim
	Slide 15: Demonstration   - Single Simulation, Sim-to-Sim
	Slide 16: Demonstration   - Single Simulation, Sim-to-Sim
	Slide 17: Demonstration   - Sim-to-Real

