Introduction — Deep Tube MPC

* We generally use a simplified model of system dynamics/kinematics
to plan trajectories through environments.

* The real robot cannot follow these paths precisely, which results in
an error between the tracking system and the planning system.

* To safely navigate environments with obstacles, we must take this
error into account while generating trajectories.

Tracking System

" @®-s

Planning System

From FaSTrack (‘17)

Introduction — Deep Tube MPC

* Prior Work
 FaSTrack (17, ‘21). produces safety guarantees based on HJ reachability
analysis, precomputing a tracking error & safety control function offline.

* HJB must be solved over the state space, which is the same dimensionality as the
system. Thus, the curse of dimensionality applies.

DL Tubes for Tube MPC (‘20): learns the distribution of MPC-derived
trajectories in closed-loop to generate stochastic bounds recursively.
* Tubes must grow throughout trajectory if using high confidence levels.
* Lacks the ability to gather large-scale data for effective learning approach.

 Problem

* The tracking system’s high-dimensionality makes it infeasible to directly
compute this error in planning.

* Learning approaches can’t produce guarantees with high confidence levels.

Introduction — RL
Trajectory Tracking

* To explore tubes, we need an
environment that relates a
olanning and tracking model.

* Recently, many papers have used

RL in simulation to synthesize b

velocity-based walking controllers.

* Cassie paper (24)

« Some of them focus on massive
parallelization (e.g., legged_gym)

From Learning to Walk in Minutes

Using Massively Parallel Deep RL I
\ A § A ¥ A A N b 5

Introduction — RL Trajectory Tracking

e Problem

* None of the approaches use massive parallelization to learn a trajectory-
based policy
* We found that PID-driven velocity controllers did not track paths well.

* We need to collect a large database
of tracking error for different trajectories. N

* We wantto demonstrate sim-to-real
on arobotin the lab - Hopper!

* Requires custom dynamic 28
models not supported.

2.6

2.4

2.2 -

Massively Parallelized RL Trajectory Tracking

- Trajectory Generation

° lmplemented ROMs Principle Trajectories

* Single Integrator —n: {vy, v, }

* Double Integrator Uniform —

* Unicycle |

e Lateral Unicycle Extreme _

* Extended Unicycle 0

* Extended Lateral Unicycle -
Ramp £

Sinusoidal t o

ﬁﬁﬁﬁﬁﬁ

Massively Parallelized RL Trajectory Tracking

- Trajectory Generation

Principle Trajectories

Uniform %

Extreme &

Ramp zﬂ 0.0

Sinusoidal % o

ﬁﬁﬁﬁﬁﬁ

Massively Parallelized RL Trajectory Tracking

- Trajectory Generation
Principle Trajectories » Rand. Linear Combination

0.6
. = 0.4 W 0.0 4
Uniform ¢ ™ s >
0.2 4 2 0.1
0.0 4 —-0.2 A
1.0 4 —0.3 A vy
081 0 2 a 6 8 10
Time

Extreme &

Ramp zﬂ 0.0

Sinusoidal % o

ﬁﬁﬁﬁﬁﬁ

Massively Parallelized RL Trajectory Tracking

- Trajectory Generation
Principle Trajectories » Rand. Linear Combination

0.6
. = 0.4 W 0.0 4
Uniform ¢ ™ s >
0.2 4 2 0.1
0.0 4 —-0.2 A
1.0 4 —0.3 A vy
081 0 2 a 6 8 10

Extreme &

Ramp :° Rand. Resampling

. : : - 1.0 4 1 [1 1 1
! 't ! ! ! — W
0.75_2/-\/\/\/\/\/ 059 1 i!,\/\‘/,..-‘: | . vy
; ; Y 5 ool | | | M
Sinusoidal % o g 007 . : : : A _s
-0.5 | | i i
—0.25 4 ! |]]
0 2 8 10 i . i ‘

ﬁﬁﬁﬁﬁﬁ

ﬂﬂﬂﬂﬂﬂ

Massively Parallelized RL Trajectory Tracking

- Trajectory Generation

Principle Trajectories » Rand. Linear Combination

0.6 - 0.1
Uniform %] = . \/\/\M A — Final Trajectory

=1 A\
2 014
£
_0‘2 -
1.0 —0.3 | vy \/\/\/w
O_E— T T T T T 0_2_
o 0.6 — v Time (s)
Extreme %] "
0.2 4
0.0_ T T T T T T _0‘2_
—0.4

0.5 “‘—‘--_"________——
Ramp & Rand. Resampling w

104

A —— o o a —
Sinusoidal % o= o1 i C ; la

~1.04 .:

Input

=y
Time

Massively Parallelized RL Trajectory Tracking

- Curriculum Learning, Raibert Heuristic, Reference Trajectories

Reference Trajectories

* For different robots, different rewards throughout
training accelerate the learning process

* E.g., rewards for mimicking behavior of simplified
models to kickstart walking movement

Reward Weighting vs. Episode

Raibert Heuristic

-]
o

_— Ttaieclt‘oryTrackmg‘ oy lproll - _Kp ex - Kvev'x

N
o

Reward (% of max)

wpitch = —Kpey, — Kyey

N
o

(Hopper) (Adam)

o

200 200 600 800 1000
Episode Number

o

Massively Parallelized RL Trajectory Tracking

- Results

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Trajectory Tracking Policy

Original PD-Controlled
Velocity Policy

T
0.0

T
0.2

T
0.4

T
0.6

T
0.8

T
1.0

Massively Parallelized RL Trajectory Tracking

- Results

Robust Hopping

Learns to Stand

Demonstration

- Single Simulation, Sim-to-Sim
IsaacSim

(Anymal C)

Demonstration

- Single Simulation, Sim-to-Sim
IsaacSim

&‘ﬁ
——— e\

(Cassie)

Demonstration

- Single Simulation, Sim-to-Sim
IsaacSim

(Hopper)

Demonstration

- Single Simulation, Sim-to-Sim

Sim-to-Sim
IsaacSim Mujoco

(Hopper)

Demonstration

- Sim-to-Real

Sim-to-Real

(Hopper)

	Slide 1: Introduction – Deep Tube MPC
	Slide 2: Introduction – Deep Tube MPC
	Slide 3: Introduction – RL Trajectory Tracking
	Slide 4: Introduction – RL Trajectory Tracking
	Slide 5: Massively Parallelized RL Trajectory Tracking - Trajectory Generation
	Slide 6: Massively Parallelized RL Trajectory Tracking - Trajectory Generation
	Slide 7: Massively Parallelized RL Trajectory Tracking - Trajectory Generation
	Slide 8: Massively Parallelized RL Trajectory Tracking - Trajectory Generation
	Slide 9: Massively Parallelized RL Trajectory Tracking - Trajectory Generation
	Slide 10: Massively Parallelized RL Trajectory Tracking - Curriculum Learning, Raibert Heuristic, Reference Trajectories
	Slide 11: Massively Parallelized RL Trajectory Tracking - Results
	Slide 12: Massively Parallelized RL Trajectory Tracking - Results
	Slide 13: Demonstration - Single Simulation, Sim-to-Sim
	Slide 14: Demonstration - Single Simulation, Sim-to-Sim
	Slide 15: Demonstration - Single Simulation, Sim-to-Sim
	Slide 16: Demonstration - Single Simulation, Sim-to-Sim
	Slide 17: Demonstration - Sim-to-Real

