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Abstract—A primary challenge in continual learning (CL)
for wearable robotics, especially prosthetics, is balancing the
need to retain learned knowledge (stability) with the necessity to
adapt to new information (plasticity). This balance is crucial for
online adaptation, enabling systems to transition between tasks
without losing prior knowledge. In this paper, we introduce a
novel online optimizer-based framework designed to manage the
stability-plasticity balance through strategic datapoint replay
and learning-rate adjustments of a deep neural network. We
applied this framework to speed estimation systems for trans-
femoral prostheses (TFA users), conducting offline validation
tests using data from 10 individuals with TFA, and online tests
with three TFA and six able-bodied (AB) participants. Our
results demonstrate statistically significant improvements: in
offline settings, our method showed a 39.2% increase in stability
and a 35.2% boost in plasticity over traditional CL approaches
during leave-one-subject-out validation. Similarly, in real-time
trials with AB participants, we observed statistically significant
gains in handling both previously encountered and new walking
speeds. Finally, trials with individuals with TFA showed that the
system improved the plasticity of the baseline model by 67.45%
and the stability of the traditional CL approach by 31.36%;
reducing overall average walking speed estimation error by
19.47%.

Index Terms—Continual Learning, Machine Learning,
Robotics, Lower-Limb Prosthetics.

I. INTRODUCTION

CONTINUAL Learning (CL) emulates the adaptive
learning behavior observed in animals, enabling sys-

tems to incrementally adapt and improve upon sequential
tasks, a capability essential for generalized intelligent systems
[1], [2]. The effectiveness of CL hinges on a delicate balance
between preserving knowledge of past tasks (stability) and
efficiently learning new information (plasticity). However,
achieving this balance is challenging because of the in-
verse relationship between stability and plasticity in systems
with limited resources. Too much stability can cause an
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entrenchment effect, making the system inflexible and less
capable of integrating new data [3], [4]. In contrast, excessive
plasticity can lead to catastrophic interference, a weak form
of catastrophic forgetting, where learning new information
undermines the system’s proficiency in other tasks [5], [6].
This dynamic is referred to as the stability-plasticity dilemma
[3] and is the focus of this study.

The focus in literature regarding the stability-plasticity dy-
namic in computer science has thus far been on mitigating its
harmful effects on both sides of the spectrum – most notably
that of catastrophic forgetting. Four classes of approaches
have been developed: architecture-based methods introduce
dynamic neural structures which add, prune, or modify
network modules, thus allowing adjustment of the structure
in response to new tasks [7]–[9]. Replay-based systems store
representative historical data in a limited coreset and augment
portions of it into real-time via fine-tuning cycles to capitalize
on task recency bias and maintain competency on old tasks
[10]–[14]. Knowledge distillation approaches involve training
a student network using the outputs or logits (outputs before
activation functions) of the parent network, thereby teaching
competency on old tasks to the student network [9], [15]–
[17]. Finally, weight regularization methods such as elas-
tic weight consolidation and memory-aware synapses help
maintain stability by adjusting the weights of the network to
protect from changing ones essential for historical tasks [8],
[10], [18], [19].

Although there are established methods to mitigate both
entrenchment and catastrophic forgetting, these limitations
persist in all systems. However, current research on CL lacks
clarity in understanding and identifying the best method to
balance stability and plasticity in models. Tuning this bal-
ance is vital as different learning scenarios demand varying
degrees of stability and plasticity. For instance, environments
with frequent and unpredictable changes require a model
with higher plasticity to adapt swiftly, whereas more constant
environments with long-range patterns benefit from greater
stability to preserve accumulated knowledge. Furthermore,
the ability to dynamically respond to data streams to maxi-
mize the benefit of model fine-tuning is essential: increasing
stability in response to potentially harmful data while am-
plifying plasticity during rapid environmental changes can
protect model performance and substantially reduce model
reaction time, respectively [20].
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In recent years, robotics has emerged as a key application
of CL due to the necessity of navigating and interacting
with the dynamism inherent to various environments and
tasks [21]. Here, we use CL in the domain of intelligent
lower-limb prosthetic control. Frequent terrain alterations and
walking gait pattern shifts of users create an environment that
is varied and evolving, requiring the integration of multi-
task systems for functionality. Furthermore, translation of
raw sensor data into meaningful user context estimation
(walking speed, terrain slope) and intent recognition (ambu-
latory mode) illustrates the necessary model complexity and
constant fine-tuning processes that must occur to maintain
an effective control system, especially for handling new,
unseen tasks to the model without losing the ability to predict
historical tasks. Finally, the unpredictability in the system,
particularly due to manual donning/doffing of sensors, gait
asymmetries/deviations, challenges with socket fittings, and
sensor drops over long periods of use underscores the ne-
cessity of a robust CL-based approach to maintain consistent
and accurate performance.

Numerical methods for intent recognition [22] and context
estimation [23], [24] are commonly used in microprocessor-
controlled prosthetic knees, such as the Ottobock C-Leg, to
modulate resistance and improve gait efficiency. However,
these methods often lack the accuracy needed to handle
dynamic transitions, such as changes in walking speed or
incline, where precise state estimation is critical. Recent
advances in machine learning (ML) [22], [25]–[32] and
deep learning (DL) [33], [34] provide adaptive pipelines
that improve mode selection, walking speed estimation, and
incline adaptation, addressing limitations of traditional nu-
merical approaches. These learning-based methods enable
more reliable handling of state transitions, which highlights
the need for adaptive systems in prosthetic devices.

First investigated in 2009 by Sensinger, et al. [35], adap-
tation methods for wearable robotics have been applied to
various fields, more recently with Spanias, et al. developing a
method for intent recognition which uses PCA dimensionality
reduction on a tuned feature space taken from EMG and
mechanical sensor readings. This system used a collection
of Dynamic Bayesian Networks (DBN), each corresponding
to a phase and mode, totaling eight models, to then make
modal classifications based on these readings. The system
implemented an LDA classifier trained on mechanical sensor
data as their backward estimator to fine-tune the DBNs
[36]. Similar work from Woodward et al. introduced DL for
intent recognition through using a Scaled Conjugate Gradient
Artificial Neural Network as a forward predictor, taking as
input feature-extracted data from load cell and IMU sensor
readings. However, unlike Spanias, et al., the study relied
on ground truth mode labels [37]. Other applications also
benefit from this approach, such as gait phase estimation in
exoskeletons [38].

Here, we build on the methods first described in [39],
[40], using a model initially trained offline using participant-

independent (IND) data, which means that models were
first trained on multi-participant data and tested using the
novel participant data. During the course of a trial, the
system fine-tunes using batched gait data specific to the
user, thereby transitioning to a partially participant-dependent
(DEP) model, meaning the model is now both trained and
evaluated on novel participant data. The adaptive pipeline
consists of a forward predictor which produces the real-time
modal classifications and speed/slope estimates which are
converted to assistance scaling parameters for prosthetic actu-
ation [41], [42]. Concurrently, a backward estimator provides
more accurate gait labels from completed stride data [41].
After a certain-sized batch of strides has been completed,
these retrospective labels are used with the gait data to fine-
tune the forward predictor in a pseudo self-supervised CL,
ideally driving the accuracy of the real-time forward predictor
to the asymptotic limit given by the accuracy of the slower,
more accurate backward estimator.

In this paper, we implement novel stability-plasticity ma-
nipulation systems into DL-based speed estimation adapta-
tion in lower-limb prosthetic control systems. Our contri-
butions using this system are threefold, each system being
demonstrated offline using a dataset of 21 trials from 10
distinct TFA participants and real-time efficacy shown online
using 6 able-bodied participants wearing a prosthetic adapter
and 3 TFA participants:

1) We propose a novel optimization-based method of
simultaneously controlling stability and plasticity based
on an analysis of their dynamics in the prosthetic adap-
tation pipeline. Specifically, we hypothesize that our
system is capable of fine-tuning the levels of stability
and plasticity within neural networks to precise levels.

2) Furthermore, we introduce the theory of Recency-
Weighted Incremental Error which allows the introduc-
tion of a tunable parameter λ representing accuracy-
optimal ratios of stability and plasticity along a con-
tinuum from very plastic to very stable. This theory
allows us to test the hypothesis that controlling sta-
bility and plasticity levels in a CL system towards an
optimal value is errorwise advantageous. Furthermore,
we hypothesize that the system can attain higher plas-
ticity than baseline models and higher stability than
conventional CL methods.

II. METHODS

A. Prosthetic System

Device: In this study, we evaluate our control systems using
the Open Source Leg (OSL) designed by the University of
Michigan (detailed mechanical design and characterization
available in [43], [44]) and assembled by the Exoskeleton
and Prosthetic Intelligent Controls (EPIC) Lab at Georgia
Institute of Technology. The OSL is a powered transfemoral
prosthesis that utilizes DEPHY ActPack actuators at both
the knee and ankle joints, a six degree-of-freedom (DOF)
load cell located at the shank (Sunrise Instruments M3564F,



Fig. 1: Overview of hardware systems, the standard CL pipeline, the SGD-MIMO system, Optimal Balance Theory, and Dynamic λ
Modification and the data that is transferred between each. The experiments involved a participant walking on a Bertec treadmill throughout
a speed profile using the OSL, equipped with ankle and knee encoders, a loadcell, optical positioning markers, and IMU sensors, and
communicating with an external computer using ROS. The standard CL pipeline operates using a forward predictor which estimates
walking speed every 1200 ms and thus scales knee power and ankle moment used by the prosthetic. and a backwards estimator which
outputs ground truth speed values. The backwards estimator output is iteratively binned into .1 m/s queues, and used to fine-tune the
forward estimator. Every fine-tuning iteration, the SGD-MIMO system appends the bins with a replay set derived from a historical coreset.
This subsystem determines the new learning rate and the number of data points to replay at each iteration using an optimal ratio given
by the Optimal Balance system. The Optimal Balance system derives the goal FM and FWT values from the RWIE relation found using
cached error minima found offline for each λ value in the range [.1, ..., .9]. The Dynamic λ Modification system computes different factors
using live data stream characteristics and an offline-tuned weight matrix is used to update λ for each fine-tuning timestep.

Nanning, China), an encoder at each joint (AS5047P &
AK7452 – DEPHY ActPack, Maynard, MA), and three in-
ertial measurement units (IMU) located on the shank (MPU-
9250 InvenSense, San Jose, CA), the top of the foot, and
attached to the participant’s thigh (2x 3DMCX5-25 IMU,
LORD Microstrain, Williston, VT). A NVIDIA Jetson Nano
was mounted in the knee housing and used to compute
real-time context estimations (i.e., forward predictions) using
the sensor readings, all of which were sampled at 100 Hz.
Additionally, an external laptop assisted in signal visualiza-
tion and impedance parameter adjustments, communicating
with the Jetson Nano through Robotic Operating System
(ROS) channel messages. Data communication between con-
currently running nodes, such as the finite state machine
(FSM), forward predictor, and backward estimator, were also
managed by ROS, which broadcasts channels like sensor
data, current phase, estimated speed, and ground truth labels.
These are used by the adaptive pipeline to learn participant-
specific gait patterns and progressively improve the models
used for real-time context estimation.

Control System: The control architecture of the prosthesis
encompasses three distinct levels: high-level, mid-level, and
low-level control. The high-level controller makes context
estimations for walking speed. These estimations are facili-
tated by onboard sensor data and ML models belonging to

the forward predictor, which we describe below. Estimates are
filtered using a Kalman filter [45]. This technique functions
by recursively estimating joint probability distributions over
undetermined variables for every time frame. Namely, the
Kalman Gain for the nth time frame:

Kn =
Pprior

Pprior + Pmeas
(1)

where Pprior is the prior variance and Pmeas is the measure-
ment variance. The gain is used to weight incoming data, es-
timating the nth time frame as Xnn = Xprior+Kn(Mslope−
Xprior), where Xprior is the prior estimate and Mslope is the
slope measurement. By using this filtered data, we decrease
the noise from the speed estimates and thus facilitate a more
predictable system. We also compute the estimate’s variance
for the nth time frame as Pnn = Pprior · (1 − Kn). The
mid-level controller is characterized by a FSM with four
states corresponding to different gait phases: Early Stance
(ES, stiffening of the knee and ankle joints), Late Stance
(LS, powered plantar flexion during push-off), Swing Flexion
(SF, powered knee swing flexion), and Swing Extension
(SE, powered knee swing extension assistance). Each state
manages transitions between gait phases, using impedance
parameters of the knee and ankle joints, and generates a
desired joint profile throughout the gait cycle, which have
been described in detail in many prior works [46], [47]. The



TABLE I: TCN model parameters - architecture parameters (left
table), training parameters (right table).

Architecture Value
kernel size 5
dropout 0.2
effective hist 120
# channels [10, 10, 10, 10]

Training Value
input size 28
output size 1
LR 1e−4

epochs 2

controller at this level regulates torque (τ ) at the joint level
(i) using a torque law that is a function of the current joint
state (both angle θ and angular velocity θ̇), stiffness (k),
theta equilibrium (θeq), and damping parameters (b), thereby
defining the impedance law

τi = −ki(θi − θeq,i)− biθ̇i. (2)

Here, the peak ankle plantarflexion moment is found in
Level Walking (LW) by fitting a linear regression model to a
dataset collected from able-bodied participants. The moment
was manually adjusted and it was found that it increased by a
factor of 0.4898 Nm at a speed of 0.5 m/s [41]. Thus, we can
accordingly find the baseline prosthetic ankle torque during
plantarflexion and adjust the impedance control stiffness ks
according to current walking speed v (m/s) [48] through

ks = k(1 + 0.422(v − 0.5)). (3)

Adaptation Pipeline: We integrate the forward predictor
and backward estimator into the adaptive pipeline to enable
real-time speed estimations to be sent to the mid-level
controller and thus scale torque parameters, while allowing
for batched fine-tuning using retrospective labeling. The
forward predictor in this embodiment consists of a Temporal
Convolutional Neural Networks (TCN) [49] which outputs
speed estimations based on 1200ms segments of data with
20ms overlap between successive windows which modulates
torque at 50Hz, and uses an architecture described in Table
I [50].

The backward estimator in previous work has been shown
to be highly effective when utilizing numerical IMU distance
calculations [39], [51]–[54]. However, in this paper, we will
be using ground-truth labels to evaluate the efficacy of the
stability-plasticity manipulation systems in isolation, so as to
avoid an interaction effect with the accuracy of the back-
ward estimator. Every batch of three strides, the backward
estimator processes elapsed data and outputs speed labels for
the associated data, both of which are used to fine-tune the
forward predictor. Here, to simplify the analysis, we decided
to use speeds collected in real-time from treadmill readings
as our backward estimator labels. In this paper, we refer to
the adaptation process without any stability-plasticity control
as the Conventional CL method, presented in Algorithm 1.
In this method, the labeled data were organized into bins by
speed increments of 0.1 m/s from .3 m/s to .8 m/s. Each bin
holds up to seven strides, using a first-in-first-out method to
keep only the most recent strides. Adaptation occurred every
third stride, using 80% of the strides in each bin for training
and the remaining 20% for validation. At least two strides

per bin were required before starting the adaptation to ensure
a balanced representation of walking speeds. The adaptation
used a learning rate of 0.0001, a batch size of 32, Adam
optimizer, mean squared error loss function, and ran for 2
epochs, the hyperparameters of which were tuned through a
grid search. Successful adaptations, indicated by improved
mean absolute error (MAE) on validation steps, led to the
replacement of the current forward estimator with the newly
adapted TCNs.

B. Stability-Plasticity Control Theory Background

The system we propose establishes a feedback loop that
continuously adjusts control strategies based on real-time
metrics that measure stability and plasticity. This adjustment
is informed by an understanding of how these metrics in-
teract, allowing the system to dynamically optimize learning
processes in response to evolving conditions.

Metrics: System performance was evaluated using Average
Incremental Error (AIE) [12], [13], based on the Average
Error (AE) [55]. AE assesses the model’s immediate perfor-
mance on the current task, k,

AEk =
1

k

k∑
j=1

ek,j , (4)

where ek,j is the MAE for task j evaluated after training up
to the k-th task:

ek,j = MAEk,j =
1

N

N∑
i=1

|yi,j − ŷi,j,k|, (5)

where N is the number of data points, yi,j is the true value,
and ŷi,j,k is the predicted value for the i-th data point in
the j-th task. AIE measures the model’s ability to maintain
performance over time, defined for the k-th task as

AIEk =
1

k

k∑
i=1

AEi. (6)

This cumulative metric indicates whether the model’s perfor-
mance changes with new tasks.

The Forgetting Measure (FM) assesses stability, specifi-
cally evaluating the model’s ability to avoid catastrophic in-
terference (forgetting) in a regression context [18]. Forgetting
manifests itself as an increase in error for previously learned
tasks, similar to how catastrophic forgetting in classification
leads to error rates near random chance. The increase in error
on task j after training up to task k, compared to its prior
best performance, is

fj,k = ek,j − min
i∈{1,...,k−1}

ei,j , ∀j < k (7)

and the FM for the k-th task aggregates this increase across
all previously learned tasks:

FMk =
1

k − 1

k−1∑
j=1

fj,k. (8)



The Forward Transfer Error (FWT) measures plasticity,
assessing how previous learning episodes affect the perfor-
mance of a model on a new task [55]. A negative FWT
indicates that prior learning has benefited the model in new
tasks, while a positive FWT suggests interference from earlier
tasks, highlighting adaptability challenges. This measure is
inversely correlated with plasticity: it is positive when in-
terference occurs and negative when past learning provides
valuable insights for current data:

FWTk =
1

k − 1

k−1∑
j=2

(ej,j − ẽj), (9)

where ẽj denotes the regression error when the model is
exclusively trained on the j-th task, while ej,j signifies the
error on the j-th task after the model has incrementally been
trained up to that point.

Basic Tools: To enhance plasticity, adjusting the learning
rate during fine-tuning in the CL cycle is effective [56], [57].
For stability, we use a simple replay method, specifically
the reservoir technique proposed by Vitter in 1985 [58].
This technique selects a uniform subset S = |C| from the
incoming data stream to include in the coreset C, constructed
with partial replay (i.e., storing only part of the experienced
data) to reduce storage costs [11], [55]. This strategy ensures
that each sample has an equal chance of inclusion, while
maintaining future training representativeness. Leveraging a
temporally aware model, we store data as complete strides
(exemplars) rather than individual points. Data selection for
inclusion in the fine-tuning pool follows a uniform distri-
bution. Furthermore, we employ experience replay (ER),
a method that combines historical and current data during
training [14], [59]. While training on a current batch B,
the model’s objective includes both new and historical data,
represented as

L(B; θ) + βL(C; θ), (10)

where L denotes the cross-entropy loss, C is the coreset,
θ represents model parameters, and β balances the focus
between new and historical tasks.

Dynamics: To accurately adjust stability and plasticity in
learning models, we must understand each method’s impact
on these metrics. For stability, represented by the FM metric,
we analyze how the number of replayed datapoints influences
this value. For plasticity, indicated by the FWT metric, we
examine the effects of varying learning rates.

We conducted experiments on the offline dataset to es-
tablish these relationships before evaluation. In the Replay-
FM trial, we varied the number of coreset exemplars added
to the training set in each fine-tuning iteration, averaging
FM changes across iterations and participants. The resulting
formula for Replay-FM dynamics is FReplay(x). In the LR-
FWT trial, we adjusted the learning rates between 10−5 and
10−2, deriving the formula for FLR(x). Furthermore, given
the inverse correlation between stability and plasticity, we
explored the interactions between methods and metrics. This

yielded formulas for GReplay(x), representing the impact of
the replay method on FWT, and GLR(x), for the effect of the
changes in learning rate on FM.

C. Stochastic Gradient Descent - Multi-Input Multi-Output

To derive the system for controlling stability and plasticity
throughout a CL trial, we first consider controlling stability
independently of its interaction with plasticity. This approach
parallels optimizers in machine learning (ML) training: in
iteration t, we aim to minimize a loss function that represents
the difference between the current and target stability metric
values. Accordingly, we can define an update rule for the
number of datapoints to replay at iteration t + 1, analogous
to Stochastic Gradient Descent (SGD):

θt+1︷ ︸︸ ︷
Replayt+1 =

θt︷ ︸︸ ︷
Replayt +

η︷ ︸︸ ︷
ηReplay ·

∇L(θt)︷ ︸︸ ︷
LStability ·

dF−1
Replay

d(FM)
(11)

LRt+1 = LRt + ηLR · LPlasticity ·
dF−1

LR

d(FWT)
(12)

In this method, Replayt represents the number of replayed
datapoints, LRt is the learning rate at iteration t, nReplay
is a tunable parameter determining the update step size,
and LStability and LPlasticity are loss functions. Although this
approach can generalize to any optimizer, we use Stochastic
Gradient Descent (SGD) due to several factors: the simplicity
of the loss landscape suggested by functions F and G,
guidance from their derivatives in shaping loss function
behavior, and the high similarity between participants’ gait
data, which implies robustness for future participants. We
also use the mean absolute error (MAE) as a loss function, as
it outperforms the mean squared error (MSE) in this context.

Given the strong interaction between plasticity and sta-
bility, each update rule must consider its impact on the
other metric. To manage this, we implement a multiple-
input multiple-output (MIMO) system with cross-interaction
terms. These terms model the adverse effects of actions that
target one metric on the opposing metric, represented by the
previously derived functions G. Thus, we establish update
rules for inputs FM , FWT , and t:

CStability = FStability(FM) + w1GStability(FWT ) + Replayt
(13)

CPlasticity = FPlasticity(FWT ) + w2GPlasticity(FWT ) + LRt

(14)

Here, the term F influences a specific metric, while the
term G dampens changes that could negatively impact the
opposing metric. The effect of cross-interaction is adjusted



by the weight terms w1 and w2. The identities of each F and
G term are as follows:

FStability(FM) = ηFReplay · LFS ·

(
dF−1

Replay

d(FM)

)
(15)

GStability(FWT ) = ηGReplay · LGS ·

(
dG−1

Replay

d(FWT )

)
(16)

FPlasticity(FWT ) = ηFLR · LFP ·
(

dF−1
LR

d(FWT )

)
(17)

GPlasticity(FM) = ηGLR · LGP ·
(

dG−1
LR

d(FM)

)
(18)

D. Optimal Balance Theory

SGD-MIMO enables us to adjust stability and plasticity
levels to target metric values, but finding the optimal values
to aim for requires a new framework. Therefore, we develop
a theory to balance metric values (FM and FWT) for various
stability-plasticity levels, introducing the concept of Recency-
Weighted Incremental Error (RWIE), derived from AIE.

RWIEk,λ =
1

k

k∑
i=1

λk−i

 1

Nt

Nt∑
j=1

|yi,t − ŷi,t|

 (19)

Here, λ serves as a tunable time-decay factor: higher λ
weights historical data more heavily, while lower λ empha-
sizes recent data. This enables performance evaluation for
specific stability and plasticity goals within the CL lifecycle
(i.e., high λ to assess stability and low λ to assess plasticity).
By sweeping RWIEk,λ for all λ ∈ (0, 1), we identified the
optimal FM and FWT values throughout the continuum from
highly plastic to highly stable.

k∗(λ) = argmin
k

(RWIEk,λ) (20)

Then we computed the FM and FWT values at
each of these minima (i.e., for each λ value swept):
FMk∗(λ) and FWTk∗(λ). Thus, we establish a precise
relation between λ and the RWIE-optimal FM and FWT
values, providing λ ∈ (0, 1) as a tunable parameter to set a
target on the stability-plasticity continuum for SGD-MIMO
throughout a CL model’s lifecycle.

E. Offline Analysis and Evaluation

Offline, we first validated the functionality of SGD-MIMO.
We then evaluated pipeline performance against Conventional
CL and Baseline methods in two domains: stability (general-
ization from historical data after non-exposure) and plasticity
(effective few-shot learning capability).

Dataset Overview: For offline analysis and system opti-
mization, we used two datasets (mean ± SD), both from
individuals with TFA. The first dataset includes 11 par-
ticipants (9 male, 2 female; age = 50.36 ± 12.09 years;
mass = 80.13 ± 15.64 kg; height = 1.77 ± 0.10 m) which
we fully utilize. The second dataset comprises data from

10 participants (7 male, 3 female; age = 42.40 ± 12.70
years; mass = 71.44 ± 14.46 kg; height = 1.69 ± 0.10
m), originally using the first two trials for benchmarking
purposes and thus used here. The participants walked at
discrete treadmill speeds [0.3, 0.5, 0.7, 0.9, 0.8, 0.6, 0.4]
m/s, with each speed held for 20 seconds and 0.1 m/s2

acceleration between speeds. The studies received approval
from the Georgia Institute of Technology Institutional Review
Board, with participants providing their informed written
consent and prosthetic alignment by a certified prosthetist.

SGD-MIMO: To validate the efficacy of the SGD-MIMO
system, we examine its ability to drive FM and FWT
metrics toward specified goal values. We evaluated this
system through two analyses, each using a forward predic-
tor trained on data from all participants except one, and
evaluated through a standard adaptation trial (augmented
with the SGD-MIMO system) using the data of the omit-
ted participant. A standard adaptation trial involves testing
data collected as the participant walks with the prosthetic,
performing forward predictions in real-time, and adapting
with ground-truth backward estimates every three strides.
In the first analysis, we perform a grid search over goal
values: Goal FM ∈ {.001, .002, . . . , .009} and Goal FWT
∈ {−.001,−.002, . . . ,−.009}. The second analysis focuses
on evaluating the efficacy of the SGD-MIMO system in
driving stability-plasticity metrics to RWIE-optimal values
specified by λ. For each λ ∈ {0.1, . . . , 0.9}, we compute
optimal FMk∗(λ) and FWTk∗(λ) and conduct a similar test
using these as goal values. These analyses were repeated for
each participant in the offline TF dataset.

Stability & Plasticity:We evaluate the model’s stability
(ability to retain previously learned information) and plas-
ticity (capacity to adapt to new labels) using a K-fold
validation-like procedure across varying speeds and λ values.
In both cases, we omit data for a specific participant during
training and use these data for testing, creating a systematic
participant exclusion for each iteration. For stability, forward
predictors are trained on all data except for a specific partici-
pant and a particular speed, with adaptation cycles using only
the data of the omitted participant. Performance is evaluated
on the withheld speed, and this process is repeated for each
speed in {0.3, 0.4, . . . , 0.9}m/s, each λ ∈ {0.1, 0.2, . . . , 0.9},
and each participant, assessing generalization from indepen-
dent (IND) to dependent (DEP) settings.

To demonstrate the plasticity of the pipeline, we use a sim-
ilar training and testing procedure as that used for stability.
However, during training, we systematically withhold data
for a specific speed. Adaptation then uses the data of the
omitted participant, and performance at the withheld speeds
is assessed. This is repeated similarly to the stability test and
thus directly assesses the adaptability of the pipeline to new
information.



Fig. 2: Treadmill Speed Profile. General Profile terminates at 120 seconds after a staircase pattern. The exclusion trials consist of the
General Profile appended with 15 seconds at each excluded speed.

F. Online Validation

Dataset Overview: Six able-bodied individuals participated
in the study (6 male; age = 24.33 ± 4.37 years; mass =
89.17 ± 7.99 kg; height = 1.83 ± 0.05 m), as well as three
participants with TFA (3 male; age = 38.66 ± 8.33 years;
mass = 86.41 ± 10.47 kg; height = 1.68 ± 0.09 m).

Experimental Protocol: Participants completed nine walk-
ing trials on a Bertec split-belt treadmill with force plates,
with treadmill speeds set as in Fig. 2, varying by trial.
Throughout, λ was set to 0.6. A certified prosthetist initially
fitted the OSL to each participant with TFA. Before trials,
impedance control parameters were tuned during treadmill
walking using user preference. In addition, the scaling equa-
tions for ankle pushoff and knee extension stiffness were
adjusted for walking speed. The trials were structured as
follows:

Trial 1: The first trial involved walking at the speeds
specified in the General Profile. During ambulation, forward
estimates used ground-truth treadmill speed, ensuring precise
prosthetic assistance scaling. The data from this trial served
as a test set for real-time monitoring of the performance of
the adaptation versus the baseline model.

Trials 2-4: These trials assessed the stability of the pipeline
during adaptation, each consisting of two parts. In part (a),
an IND forward predictor trained on the offline dataset was
adapted in real-time using the S&P Controlled framework
while walking the General Profile. During adaptation, tread-
mill speeds were maintained at specific values (trial 2: 0.3 &
0.4 m/s, trial 3: 0.5 & 0.6 m/s, trial 4: 0.7 & 0.8 m/s) without
adaptation. In part (b), these speeds were walked at for 15
seconds each with adaptation frozen to record the accuracy
of the speed estimation. Collected data was then used for
offline simulation of Baseline and Conventional CL methods
for comparison.

Trials 5-7: These trials were aimed to evaluate the plas-
ticity of the pipeline, which also includes two parts. In part
(a), adaptation occurred throughout the General Profile using
a forward predictor trained on all offline TF data, excluding
specific speeds, with the S&P Controlled pipeline. Afterward,
adaptation was frozen, and participants walked for 15 seconds
at the omitted speeds, recording the accuracy of the speed
estimation, as in trials 2-4. The data gathered were then

used for offline simulation of Baseline and Conventional CL
methods for comparison.

Trials 8-9: The last two trials involved participants walking
the General Profile to enable error-based comparison between
methods. A forward predictor trained on all the TF participant
speeds in the offline dataset was used with the S&P Con-
trolled pipeline. In trial 8, adaptation proceeded normally,
while in trial 9, adaptation was frozen and the accuracy
recorded. Offline simulations of Baseline and Conventional
CL methods were also performed, allowing error comparison
between methods after forward predictor adaptation.

Statistical Analysis: For Stability and Plasticity trials
with able-bodied participants, we used Repeated Measures
ANOVA to assess differences across the three methods:
Conventional CL, S&P Controlled, and Baseline. This anal-
ysis tested two hypotheses: that the S&P Controlled method
would exhibit greater stability than Conventional CL and
higher plasticity than Baseline. Post hoc tests with Bonferroni
corrections followed ANOVA to identify specific differences
between methods. For trials with TFA participants, we calcu-
lated the effect sizes using Hedges’ g to compare outcomes
between methods.

III. RESULTS

A. Offline Results

SGD-MIMO: As shown in Fig. 3, averaged across partici-
pants, it is observed that the MAE of the Forgetting Measure
(FM) is equal to 3.61× 10−5 and the MAE of the Forwards
Transfer Error (FWT) is equal to 6.33 × 10−5 m/s. These
error rates are negligible, providing strong support that SGD-
MIMO performs as expected.

Stability: We observed an approximately linear relationship
between the value of λ and the MAE in Fig. 4, where the
higher values of λ correspond to a lower error, enforcing the
positive relationship between stability and the value of λ.
We also noted that Conventional CL performed similarly to
the S&P Controlled method when λ = 0.23 and that Baseline
performed similarly to the S&P Controlled method when λ =
0.55. Therefore, the S&P Controlled method demonstrated
superior stability when λ ≥ 0.55, further supporting the use
of λ = 0.6 in static λ use cases. Moreover, it was clear that
extremely high λ values approach accuracy levels expected of



Fig. 3: Results from offline test of SGD-MIMO efficacy. The
evaluation shows negligible discrepancy between actual and desired
metric values for both Forgetting Measure and Forward Transfer
Metric.

Fig. 4: Results from offline stability trials. S&P Controlled method
shows direct correlation between the value of λ and the performance
of the task, outperforming Baseline when λ ≥ .55 and Conventional
CL (Standard) when λ > .23.

speeds recently seen in the Conventional CL method, which
should be viewed as the asymptotic limit here.

Plasticity: In Fig. 5, we observed a very high error rate
for the Baseline model, which should be expected as it
has no ability to learn the speeds tested on since they are
omitted from the initial training set and it does not adapt.
Thus, the high MAE of 0.219 m/s was due to the model
predicting some of the closest speeds that it had previously
seen. As seen in the Stability test, the S&P Controlled method
displayed a near-linear relationship between λ values and
MAE, reflecting the expectation that low λ values are more
plastic. The S&P Controlled method seems to perform better
(i.e., is more plastic) than Conventional CL at λ values
less than 0.7. This, again, supports the use of the static
λ = 0.6 value. Similarly to the stability test, low λ values also
approached error values expected from models fully trained
on withheld speeds.

B. Online Results

Stability Evaluation (trials 2-4): In the able-bodied trials,
the statistical analysis demonstrated that the S&P Controlled

Fig. 5: Results from offline plasticity trials. S&P Controlled method
shows inverse correlation between λ value and performance on
task, outperforming Conventional CL when λ < .7 and Baseline
universally.

method is more stable than Conventional CL with statistically
significant results (pval corr < 0.05) for all exclusion profiles,
as shown in Fig. 6. On average, the S&P Controlled method
improved the Baseline method by 10.25% and Conventional
CL by 31.36% (avg. pval corr = 0.01).

In trials involving participants with transfemoral amputa-
tions (TFA), we observed that S&P Controlled still exhibited
the lowest error (shown in Fig. 6). On average, the S&P
Controlled method improved Baseline by 21.34% (1.91 avg.
Hedges’ g over exclusion profiles) and Conventional CL by
37.65% (3.5 avg. Hedges’ g), improving consistently upon
the two alternative methods in every exclusion profile.

Plasticity Evaluation (trials 5-7): In the able-bodied trials,
we similarly noted that S&P Controlled outperformed the
other methods, as seen in Fig. 6. The statistical analysis
confirmed the hypothesis that the S&P Controlled method is
more plastic than Baseline. On average, the S&P Controlled
method improved Baseline by 64.4% (avg. pval corr = 0.0001)
and Conventional CL by 21.06%.

In trials with TFA participants, we observed that S&P
Controlled outperforms the other methods, as seen in Fig. 6.
On average, the S&P Controlled method improved Baseline
by 67.45% (1.5 avg. Hedges’ g) and Conventional CL by
15.03% (1.23 avg. Hedges’ g).

Error Comparison (trials 8-9): In the able-bodied trials,
we compared the Conventional CL and S&P Controlled
methods against Baseline, focusing on their final and average
Mean Absolute Error (MAE) improvements throughout trials.
As shown in Fig. 6, the S&P Controlled method reduced
final and average errors by 9.8% and 4.3% over Baseline,
respectively, marking a 7.8% improvement in final error and
a 38.1% greater improvement in average error than Con-
ventional CL. Similarly, in trials involving participants with
TFA, the S&P Controlled method yielded final and average
error reductions of 19.47% and 9.58% over Baseline. Thus,
compared to Conventional CL, S&P Controlled demonstrated
a 10.73% greater reduction in final error 144.51% in average
error.



Fig. 6: Results from stability and plasticity trials with able-bodied (n = 6) and TFA (n = 3) participants. Plot A: Able-Bodied Stability
Trials; Plot B: TFA Stability Trials; Plot C: Able-Bodied Plasticity Trials; Plot D: TFA Plasticity Trials. * denotes statistically significant
differences supporting hypotheses

Fig. 7: Percent Improvement of S&P Controlled and Conventional CL methods in able-bodied and TFA participant trials over baseline.
Averaged over all able-bodied participants, S&P Controlled has marginal improvement in final error (7.8%) and significant improvement
in average error (38.1%) over Conventional CL. Averaged over all TFA participant trials, S&P Controlled has a strong improvement in
both final error (10.73%) and average error (144.51%) over Conventional CL.

IV. DISCUSSION

The first hypothesis of this study was that the SGD-MIMO
system can be used to control the levels of stability and plas-
ticity precisely and simultaneously. Our results support this
hypothesis by demonstrating that the SGD-MIMO system
effectively drives stability and plasticity metrics toward the
desired levels during continual learning (CL) trials. Offline
tests indicated that the mean MAE between the actual and
desired metrics for Forgetting Measure (FM) was 3.61 ·10−5

and for Forwards Transfer Error (FWT) was 6.33 · 10−5

after sweeping different target values. This confirms that the
system consistently controlled these values with negligible
error. Furthermore, when evaluated in different trials, the os-
cillations around the goal values for both FM and FWT were
minimal, indicating that the SGD-MIMO system maintained
the pre-specified targeted balance between stability and plas-
ticity throughout training. This precise control reinforces our
claim that the system can manipulate these two metrics to
pre-specified levels, making it suitable for diverse learning
environments that require varying levels of retention and
adaptability.

Next, we hypothesized that we can control the stability
and plasticity levels of a network in real-time to error-optimal
levels, thereby yielding higher plasticity than baseline models
and higher stability than conventional CL methods. The
results of both offline and online trials provide strong evi-
dence for the real-time efficacy of the SGD-MIMO system in
achieving error-optimal control over stability and plasticity.
In the online evaluation tests, the S&P Controlled method
outperformed the Conventional CL models by improving
stability by 31. 36% and 37. 65% for the able-bodied
and TFA trials, respectively. Similarly, the S&P Controlled
method improved upon the static Baseline models by in-
creasing plasticity levels by 64.4% and 67.45% for able-
bodied and TFA participant trials, respectively. Furthermore,
statistical analysis shows significant differences between the
S&P Controlled and Conventional CL method in stability
trials and between the S&P Controlled and Baseline method
in the plasticity trials, with p-values less than 0.05 in all
cases. These results confirm that real-time control of stability
and plasticity, achieved through responsive fine-tuning, leads
to performance improvements that exceed conventional CL
systems, even with a static balance (e.g. λ = 0.6). We note



that in the evaluation of all hypotheses, we observe exactly
the same trends between the trials involving AB participants
and those involving individuals with TFA.

In our able-bodied experiments on Stability, the S&P
Controlled model demonstrated enhanced generalization ca-
pabilities compared to the Baseline model in two of the
three exclusion profiles (one of which has a statistically sig-
nificant difference). This superior performance is attributed
to its strategy of replaying data points along with real-
time learning. By constantly reintegrating historical data,
the S&P model retains previously acquired knowledge also
belonging to the Baseline model but also integrates new
related information. This process prevents overwriting of
existing memories and supports the formation of abstract
representations that apply across similar speeds. Similarly, in
our able-bodied Plasticity tests, the S&P Controlled method
was more plastic on average than Conventional CL over all
three trials (two of which were statistically significant). This
is simply explained by looking at the average learning rate
(η) of both methods throughout the trials. The Conventional
CL method used a constant η = 1 × 10−4 and the S&P
Controlled method used η = 3.7 × 10−3 on average. Thus,
the higher η used by the S&P Controlled method allows it
to exhibit greater plasticity.

Direct comparisons to explicit stability and plasticity mea-
surements cannot be made with other prosthetic or wearable
robotic studies as other studies in the field do not yet formally
test this important concept. However, there are error-wise
comparisons with other studies of transfemoral prosthetics
for walking speed estimation. For example, IND models have
been trained to achieve a root mean square error (RMSE) of
0.07 m/s in speed estimation tasks, as reported by Bhakta, et
al [60]. Kinematic methods have achieved comparable RMSE
values, with 0.09 m/s using a shank IMU [61] and 0.08 m/s
through double integration techniques [62]. A more recent
study by Maldonado-Contreras, et al. [63], which focused on
the CL pipeline and is comparable with this study, achieved
an average MAE of 0.074 m/s after the adaptation was
complete. As shown in the results, our approach improves the
final error of this method by 10.73% and the average error
by 144.51% in the TFA trials. Compared to related studies
that achieved improvements of 7% [64] and 45% [37] in
classifying walking modes through adaptation techniques, our
work demonstrates a 19.47% improvement—an especially
notable result given that our task focuses on the regression
challenge of speed estimation rather than classification. Our
study not only achieves superior accuracy, but also addresses
the critical challenge of system robustness by demonstrating
adaptability to previously unseen speeds while maintaining
stable accuracy in real-time. This highlights a significant
advancement over existing systems, which often rely on
frequent online fine-tuning.

The study has several limitations, including the selec-
tion of FM and FWT for stability and plasticity metrics
without evaluating other options like Backward Transfer

Error (BWT) and Intransigence Measure (IM), which could
offer different insights. Alternative sampling methods, such
as prioritized replay, cluster-based sampling, or temporal
coherence sampling, could also enhance model performance
but were not explored. Moreover, methods such as adjusting
momentum, dropout rates, or regularization strength could
serve as alternatives to replay for stability, though these
were not considered in depth. In the results, performance
differences were more pronounced when extrapolating speeds
(e.g., 0.3 0.4 m/s, 0.7 0.8 m/s) rather than interpolating
(0.5 0.6 m/s), likely due to the greater distance of these
edge speeds from the core training data, which limits the
model’s ability to generalize effectively across the full speed
range. We also simplified our pipeline by using ground truth
(GT) labels from treadmill speeds, limiting the approach to
overall applicability, and future work should explore non-
GT estimators, perhaps by using IMUs on foot insoles.
The statistical analysis of the study relied on able-bodied
participants with limited data from participants with TFA,
indicating a need for more comprehensive trials with a larger
and more diverse participant pool. Overground trials, once
an effective backward estimation method is established, are
necessary to assess real-world pipeline performance.

V. CONCLUSION

This paper has demonstrated the potential of the SGD-
MIMO framework and Optimal Balance Theory to signifi-
cantly mitigate the stability-plasticity dilemma in continual
learning systems. Our empirical studies in the domain of
speed estimation for lower-limb prostheses underscore the
ability of these methodologies to effectively enhance both
stability and plasticity. The offline and online experiments
conducted using data from individuals with TFA and able-
bodied individuals reveal that our framework not only outper-
forms traditional continual learning systems in this domain,
but also shows statistically significant improvements in real-
time applications. This suggests that precision in tuning sta-
bility and plasticity can be critical to the success of adaptive
systems, especially in dynamic and physically interactive
environments, such as robotic control. The principles and
methods in this study could extend to domains where contin-
ual learning is essential, enabling adaptive systems to adapt
to changing conditions while preserving knowledge without
extensive retraining. This work advances the development
of robust and adaptable systems that thrive in dynamic
environments.
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APPENDIX A - EXPERIMENTAL PROTOCOL

Trial Number Description Output

Baseline Data (1 trial, 2 mins)

1 Use baseline model for forward prediction; repeat walking profile Baseline accuracy + adaptation test data

Stability Demonstration (3 trials, 8 mins)

2a Adapt using S&P Controlled Method; freeze at 0.3 and 0.4 m/s Trained Model 1

2b Test Model 1; walk at 0.3 and 0.4 m/s for 15 seconds, no adaptation Accuracy at 0.3 and 0.4 m/s

3a Adapt using S&P Controlled Method; freeze at 0.5 and 0.6 m/s Trained Model 2

3b Test Model 2; walk at 0.5 and 0.6 m/s for 15 seconds, no adaptation Accuracy at 0.5 and 0.6 m/s

4a Adapt using S&P Controlled Method; freeze at 0.7 and 0.8 m/s Trained Model 3

4b Test Model 3; walk at 0.7 and 0.8 m/s for 15 seconds, no adaptation Accuracy at 0.7 and 0.8 m/s

Plasticity Demonstration (3 trials, 8 mins)

5a Adapt using S&P Controlled Method; no training at 0.3 and 0.4 m/s Trained Model 1

5b Test Model 1; walk at 0.3 and 0.4 m/s for 15 seconds, no adaptation Accuracy at 0.3 and 0.4 m/s

6a Adapt using S&P Controlled Method; no training at 0.5 and 0.6 m/s Trained Model 2

6b Test Model 2; walk at 0.5 and 0.6 m/s for 15 seconds, no adaptation Accuracy at 0.5 and 0.6 m/s

7a Adapt using S&P Controlled Method; no training at 0.7 and 0.8 m/s Trained Model 3

7b Test Model 3; walk at 0.7 and 0.8 m/s for 15 seconds, no adaptation Accuracy at 0.7 and 0.8 m/s

Method Error (2 trials, 4 mins)

8 Adapt using S&P Controlled Method; trained on all speeds Trained Model 1

9 Test Model 1; repeat walking profile Accuracy with adapted predictor

TABLE II: Experiment Trials and Results



APPENDIX B – CONVENTIONAL CL ALGORITHM

Algorithm 1 One-Shot Conditional Continuous Learning for Adaptive Speed Estimation

Require: Θ: Forward predictor model, Dinit: Initial data, B: Backwards estimator
Require: ∆s: Strides per tuning, k: Stiffness, b: Damping

0: F ← Initialize(Θ,Dinit) {Initial forward predictor}
0: T ← {}; S ← [ ]; D̂ ← [ ]; s← 0 {Initialize bins, test data, gait data, stride count}
0: while trial ongoing do
0: Dfiltered ← KalmanFilter(ReceiveData(), D̂,F)
0: D̂ ← Dfiltered + D̂; v ← PredictSpeed(Dfiltered)
0: ks ← k(1 + 0.422(v − 0.5))
0: for each joint i do
0: τi ← −ki(θi − θei)− bθ̇i
0: end for
0: if StrideComplete(D̂) then
0: s← s+ 1
0: if s mod ∆s = 0 then
0: Dodd,Deven ← Split(D̂)
0: L̄even, L̄odd ← MAV(B(Deven)),MAV(B(Dodd))
0: S ← S + (Deven, L̄even)
0: T ← Enqueue(Dodd, L̄odd)
0: F ′ ← FineTune(F , T )
0: if EvaluateAccuracy(F ′,S) > EvaluateAccuracy(F ,S) then
0: F ← F ′ {Update predictor if accuracy improves}
0: end if
0: s← 0; D̂ ← {}
0: end if
0: end if
0: end while=0



APPENDIX C – DYNAMIC λ CONTROL

We designed an additional system to dynamically modify
λ in real-time based on input data stream characteristics to
increase plasticity when appropriate (e.g. changes in label
distributions) and increase stability when appropriate (e.g.
noisy data). In the following, we test our hypothesis that this
dynamic control is more error-wise advantageous than using
static λ values in CL systems.

A. Methods

From Optimal Balance Theory, we have a method to
modify the stability and plasticity characteristics of the
network in the CL pipeline to achieve an optimal balance,
enabling the tuning of λ for tasks requiring extreme stability
(e.g., repetitive, long-range patterns) or high plasticity (e.g.,
constantly varying environments). Building on this, we can
create a dynamic system that adjusts λ in real time based
on incoming data, incorporating the entire stability-plasticity
control system into an adaptive feedback loop, as shown in
Fig. 1.

We define this update rule generally using the relation:

λt+1 = λt · (1 +WT · F ) (21)

where λt is λ at time t and F is a factor vector consisting
of metrics computed from the input data stream at every
iteration which is scaled in effect by W , a tunable weight
vector. For our purposes, we construct F using three illustra-
tive factors: label distribution shifts (L), data noise (N) and
error rate (E). The greater the frequency of the label shifts,
the more plastic the model should behave to adapt to new
environmental conditions, thus we define:

L(li) = |Pcurrent(li)− Phistorical(li)| (22)

P (li) =
F (li)∑n
j=1 F (lj)

(23)

where F (li) is the historical count of label i. We scale
stability proportionate to N to protect the model from
fine-tuning on unreliable data, and define N as the dif-
ference between Kalman-filtered and unfiltered data. Fi-
nally, we define E as MAE(Ground Truth,Prediction)
or MAE(Backward Estimate,Prediction), depending on the
availability of ground-truth labels.

We tune the weight matrix using a grid search in the
range [−1, 1] and step size 0.05 for each individual weight,
according to the accuracy of the adaptation trial of all
participants with TFA. We obtain the weights:

W =

LN
E

 =

 −0.10.3
−0.05

 (24)

To demonstrate the functionality of dynamically modifying λ
in conjunction with the other two subsystems, we conduct a
simple comparison. We train the forward predictor and sweep

Fig. 8: Results from offline comparison between Dynamic λ Mod-
ification and static λ values. Dynamic balancing improves the best
λ value of .6 by 5.6%.

participants identically to the method used to assess the SGD-
MIMO subsystem. In one trial, λ is dynamically modified
using the relation and weight matrix described previously
throughout each adaptation trial. In the other nine trials,
we use static λ values in {0.1, . . . , 0.9}. This procedure
explicitly tests the superiority of dynamically modifying λ
versus setting it statically.

B. Results

As shown in Fig. 8, we found that the best performance
with a static λ value is 0.6 with an MAE of 0.071 m/s.
Dynamic λ Modification achieved a slightly lower error rate
of 0.067 (5.6% improvement).

C. Discussion

We hypothesized that using Dynamic λ Control, we attain
more error-wise optimal stability and plasticity values to
drive the models towards achieving than static λ values in
CL systems. The average results from the offline comparison
between dynamic λ Control and static λ trials indicate that
dynamic adjustment of the stability-plasticity balance leads
to more optimal outcomes, but the results lacked statistical
significance, and thus the hypothesis is rejected. Dynamic λ
Control achieved an MAE of 0.067 m/s, a 5.6% improve-
ment over the best static λ value (0.071 m/s). Although
this improvement is small, it highlights the adaptability of
the dynamic system to respond to varying environmental
conditions and learning requirements. Furthermore, while the
statistical difference between Dynamic λ and the best static
λ value was not significant enough to justify further online
evaluation, the trend toward lower error rates with dynamic
control suggests that it can be particularly beneficial in more
complex or rapidly changing scenarios than simple treadmill
speed-varying trials.
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