
  

 
 

Abstract— Accurate walking speed estimation in lower-limb 
prostheses is crucial for delivering biomechanically appropriate 
assistance across varying speeds. However, training robust 
models requires extensive domain-specific, user-dependent 
(DEP) data, which is impractical for every new prosthesis user. 
This study presents a transfer learning framework to simplify 
and enhance the training process. Convolutional neural 
networks were pre-trained on publicly available datasets from 
able-bodied (AB) individuals and transfemoral amputees using 
the Open Source Leg (OSL) knee-ankle prosthesis, then fine-
tuned with data from a transfemoral amputee using the Power 
Knee (PK) prosthesis. The fine-tuned models, AB-PK and OSL-
PK were trained with varying data amounts and evaluated 
across constant and variable walking speed trials, with 
performance compared to DEP models trained from scratch on 
PK data. Training and testing were conducted on a per-subject 
basis, with performance averaged across subjects (N=7). The 
lowest post-fine-tuning error was observed in AB-PK, with 
RMSE values of 0.041 m/s for constant speeds, 0.072 m/s for 
variable speeds, and 0.088 m/s for novel speeds not included in 
the original training data. Significant error reductions were 
observed in both fine-tuned models compared to DEP when 
fewer than 30 gait cycles per speed of training data were 
available. Notably, AB datasets appeared highly viable for this 
application and may even outperform OSL datasets in transfer 
learning for walking speed estimation, perhaps due to the much 
larger original training dataset. This approach highlights the 
potential of transfer learning across different subject 
populations and devices, offering insights into the data needed 
to achieve state-of-the-art speed estimation. 

I. INTRODUCTION 

Powered lower-limb prosthetic devices [1], [2], [3], [4] 
use actuators, sensors, and microprocessors to enhance 
mobility for amputees by delivering net positive work, 
minimizing compensatory movements, and promoting a more 
natural gait, improved stability, and reduced energy 
expenditure [5], [6], [7], [8], [9], [10]. A critical component 
of these devices is the controller, which ensures safe and 
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effective interactions between the user, prosthesis, and 
environment. Central to this control is context estimation, 
such as speed estimation, which drives speed-specific 
assistance, enabling a smooth gait across varying walking 
speeds. Speed-adaptive control systems for these prostheses 
often follow a hierarchical structure, starting with high-level 
controllers that estimate the user’s state or environment (e.g., 
speed) [11], [12], [13]. This information is passed to mid-
level controllers, where impedance control parameters are 
adjusted to modulate knee and ankle behavior [14], [15]. 
These parameters, whether state-specific or modeled, aim to 
replicate able-bodied kinematics and kinetics and adapt to 
different walking speeds [16]. Some systems employ a 
continuous strategy, using a pre-trained gait model to adjust 
impedance parameters based on the computed phase variable 
and walking speed [15]. 

To compute walking speed in real-time, machine learning 
methods have been proposed that use regression models 
trained on user-dependent (DEP) data [17]. Machine learning 
methods can match the performance of traditional walking 
estimation methods like direct integration [18] and kinematic 
modeling [19], [20]. The lowest errors achieved in amputee 
populations were 0.014 and 0.09 m/s RMSE for machine 
learning [17] and non-machine learning [20] approaches, 
respectively. A drawback of the machine learning DEP 
approach is the large up-front cost of DEP data collection, as 
each new user typically undergoes hours of treadmill trials at 
different speeds. This process can be particularly taxing for 
individuals with lower-limb amputations who experience 
asymmetric and inefficient gait, which is exacerbated across 
different walking speeds [21], [22]. Fortunately, open-source, 
multi-subject datasets [16], [23] can be used to train user-
independent (IND) models that generalize well to new users. 
However, IND models yield higher errors [17] and often fail 
when applied across different user populations and devices 
due to variations in signal shape and quality. Given the 
scarcity of prosthesis-related datasets and the increasing 
number of custom research prostheses, there is clear value for 
transfer learning methods that transfer walking speed 
estimation knowledge between populations and devices, 
especially for cases with limited data. 

Transfer learning is widely employed to enhance the 
efficiency and adaptability of robotic systems by leveraging 
knowledge from previously learned tasks to solve new, but 
related tasks. This approach is essential in robotics, where 
retraining models from scratch for each new scenario is often 
impractical. In domain adaptation, the goal is to adjust 
models trained in one domain (source) to perform effectively 
in a different but related domain (target). This is typically 
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achieved by aligning the feature spaces of the source and 
target domains, reducing domain shift. Techniques such as 
adversarial domain adaptation, where models are trained to 
learn domain-invariant features [24], are commonly applied. 
Another common approach is model-based transfer learning, 
in which an entire model or parts of a model trained on the 
source task are transferred to the target task. Typically, the 
pre-trained weights from a neural network trained on the 
source task serve as the initial parameters for training on the 
target task. This is followed by fine-tuning to adapt the model 
to the specific requirements of the target domain [24]. These 
techniques are particularly useful in scenarios where labeled 
data in the target domain is scarce, making transfer learning a 
powerful tool for tasks involving robotic systems and 
prostheses. 

 Employing transfer learning enables the creation of 
foundational models from large datasets that can generalize 
across different populations and devices, ushering in a new 
paradigm in prosthetic device development where high-
quality data collection becomes crucial. This approach also 
enhances accessibility and lowers the barriers to entry for 
developing new powered prosthetics, allowing for more 
personalized and effective solutions in the field. Transfer 
learning has already demonstrated strong results in the 
control systems of hand prostheses, such as in transferring 
sEMG decoders between subjects [25], improving EMG 
pattern recognition systems [26], and in ambulation mode 
classification for lower-limb prostheses [27], [28].  

In this study, we employ a domain adaptation and 
Convolutional Neural Network (CNN) model-based transfer 
approach to fine-tune speed estimation models for a novel 
device with limited user- and device-specific data. We pre-
train two separate CNN models: one on data from 
transfemoral amputees using the Open Source Leg (OSL) 
knee-ankle prosthesis, and another on data from able-bodied 
(AB) individuals, allowing for a comparison of their 
performance. Models are then fine-tuned using varying 
amounts of data from transfemoral amputees using the Power 

Knee (PK), a commercially available knee prosthesis. This 
approach aims to reduce the need for extensive data 
collection from novel PK users, typically required for 
achieving state-of-the-art DEP performance. 

We hypothesize that: 

• Fine-tuned models will outperform models trained 
exclusively on PK data, successfully transferring 
walking speed estimation knowledge between 
domains. 

• Fine-tuned models pre-trained on OSL data will 
outperform those pre-trained on AB data, given the 
greater similarity in gait mechanics between the 
OSL and PK user populations. 

• Fine-tuning with limited PK data will initially 
outperform models trained exclusively on PK data, 
as the transferred knowledge compensates for the 
smaller dataset. However, as more PK data becomes 
available, the performance gap will diminish, with 
both approaches converging after a certain amount 
of PK data. 

These hypotheses aim to explore the advantages of 
transfer learning in improving model performance and 
adaptability across different prosthetic devices and user 
populations.  

II. METHODS 

A. Datasets 
This study utilized one natively collected dataset (PK) 

and two open-source datasets (AB and OSL) to develop a 
transfer learning framework for walking speed estimation 
across populations and devices (Fig. 1). The datasets were 
chosen due to similarities in sensor sets and walking speeds. 
All datasets were collected in our lab using similar equipment 
and methods. This study was approved by the Georgia 
Institute of Technology IRB, and a certified prosthetist 

 
Fig. 1.  This diagram illustrates the use of transfer learning in estimating walking speed. A model is pre-trained on data from two large datasets: the Able-
Bodied Dataset and the Open-Source Leg Dataset. The model is then fine-tuned using a smaller, subject-specific dataset (Power Knee Dataset) from a 
transfemoral amputee. This approach enhances estimation accuracy while reducing the need for extensive data collection from the new subject. 
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ensured proper alignment and comfort of the prosthetic 
devices for each participant. 

1) Power Knee Dataset: A total of 7 individuals with 
transfemoral amputation, wearing an Össur Power Knee 
prosthetic knee and Veriflex foot, participated in a two-part 
collection. The collection involved walking at both constant 
and dynamic treadmill speeds on a Bertec treadmill (Bertec, 
Ohio, USA). For constant speeds, a 2-minute trial was 
collected at each speed between 0.3 to 0.9 m/s, incremented 
by 0.1 m/s. On average, each constant speed trial consisted of 
76.8 ± 14.6 prosthesis-side gait cycles, with a duration of 
1.71 ± 0.57 seconds per cycle. Two dynamic trials were also 
recorded. The first followed a staircase profile, holding each 
speed for 20 seconds before accelerating to the next at 0.1 
m/s², covering speeds from 0.3 to 0.9 m/s. The second 
followed a triangular profile, accelerating from 0.3 to 0.9 m/s 
and then decelerating back to 0.3 m/s at 0.1 m/s². The Power 
Knee was equipped with an internal knee encoder, a ground 
reaction force sensor, and a shank inertial measurement unit 
(BNO055, Bosch Sensortec, Reutlingen, Germany). A 
NVIDIA Jetson Nano sampled sensor data from the Power 
Knee at 100 Hz via serial communication. Treadmill speeds 
were commanded at 50 Hz by a research desktop running 
MATLAB. Sensor data and treadmill speeds were wirelessly 
streamed and recorded on a research laptop using the Robot 
Operating System (ROS) network. Prosthetic control was 
managed by proprietary Össur firmware. 

2) Open-Source OSL Dataset: A total of 9 individuals 
with transfemoral amputation, wearing the Open Source Leg 
(OSL) knee-ankle prosthesis, participated in a collection 
identical to the PK dataset. The OSL was equipped with an 
ankle and knee encoder (AS5047P & AK7452 - DEPHY 
Actpack, Maynard, MA), as well as IMUs on the thigh, 
shank, and foot (3DMCX5-25 LORD Microstrain, Williston, 

VT and MPU-9250 InvenSense, San Jose, CA), and a 6-DOF 
load cell (Sunrise Instruments M3564F, Nanning, China). An 
NVIDIA Jetson Nano sampled sensor data at 100 Hz via 
serial communication, which was communicated and 
recorded along with treadmill speeds (50 Hz) over a ROS 
network. Prosthetic control was implemented using an 
impedance-based finite-state machine, which imposed phase-
specific prosthetic behavior at each joint, tailored to the 
preferences of each subject. More details about the dataset 
are available here: https://doi.org/10.35090/gatech/70300. 

3) Open-Source Able-bodied Dataset: A total of 20 able-
bodied individuals were equipped with hip, knee, and ankle 
goniometers (Biometrics. Ltd. Newport, UK); IMUs on the 
trunk (Yost, Ohio, USA), thigh, shank, and foot; and 
electromyography (EMG) sensors on their right leg 
(Biometrics. Ltd. Newport, UK). Six-DOF force plate data 
were collected using the built-in force plate of the Bertec 
treadmill. Goniometer, IMU, EMG, and force plate data were 
sampled at 1000 Hz, 200 Hz, 1000 Hz, and 1000 Hz, 
respectively. Treadmill walking data were collected at 28 
speeds, ranging from 0.5 to 1.85 m/s in 0.05 m/s increments, 
over 7 trials. Each trial included four speeds, starting from 
rest, followed by a slow speed, then a medium-fast, and 
finally a fast speed, before slowing to a medium-slow speed. 
For example, the first trial involved speeds of 0.5 m/s, 1.2 
m/s, 1.55 m/s, and 0.85 m/s, with subsequent trials increasing 
by 0.05 m/s. Each speed was maintained for 30 seconds to 
capture steady-state walking. More details about the dataset 
are available in the associated manuscript [16]. 

C. Data Processing 
To ensure consistency across datasets, we aligned the 

sensor signals from the PK, AB, and OSL datasets to create a 
uniform set of inputs for walking speed estimation. The PK 

 
Fig. 2. Sensor signals from individuals with lower-limb amputations using the Open-source Leg (N=9), Power Knee (N=7), and able-bodied individuals 
(N=20) walking at slow (light) to fast speeds (dark). Raw signals underwent standard normalization, gait cycles segmentation, and resampling to 200 
samples. Plotted signals are averages across gait cycles and subjects for each speed ranging between 0.3 and 1.85 m/s. 
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dataset consisted of five primary sensor signals: knee angle, 
vertical ground reaction force (GRF), anterior-posterior 
shank acceleration, medial-lateral shank acceleration, and 
superior-inferior shank acceleration. Additionally, a sixth 
signal—knee angular velocity—was derived by calculating 
the time derivative of the knee angle (Fig. 2).  

To align the AB and OSL datasets with the PK dataset, 
we retained only the relevant sensor channels, including knee 
angle, GRF, and accelerations along three axes. Each signal 
was then transformed to ensure consistency in units and 
direction across datasets, eliminating discrepancies from 
differences in measurement systems or coordinate frames. 
This transformation ensured comparability of the signals 
across datasets. 

Next, data from each subject were segmented into 
individual gait cycles. The vertical GRF signal was used to 
detect heel strikes, applying a 20% weight threshold to 
identify the start of each gait cycle. The data were then 
resampled to 200 samples per gait cycle, ensuring uniform 
representation of the gait cycle across different walking 
speeds. This resampling process standardized the temporal 
resolution of the data, allowing consistent input for machine 
learning models. 

To further improve consistency, all signals were 
normalized on a per-subject basis using z-score 
normalization. This method adjusted each signal by 
subtracting its mean and dividing it by its standard deviation, 
producing a distribution with a mean of 0 and a standard 
deviation of 1. The normalization process reduced inter-
subject variability and made signals across datasets more 
similar. Fig. 2 shows the normalized signals, illustrating the 
improved alignment between datasets after preprocessing. 

C. Model Architecture 
The CNN is a deep learning architecture well-suited for 

capturing feature representations directly from raw sensor 
signals, eliminating the need for hand-engineered features 
[17], [27], [28]. Its layered structure enables it to learn 
complex, hierarchical representations, allowing it to 
generalize across subjects and achieve robust user-
independent performance. In this study, the CNN was applied 
to estimate walking speed from multi-sensor input data by 
learning patterns across subjects and speeds. 

The model accepted input windows of size 150x6, where 
150 represents the number of time samples per window and 6 
corresponds to the number of sensor signals (knee angle, 
knee angular velocity, vertical ground reaction force, 
anterior-posterior shank acceleration, medial-lateral shank 
acceleration, and superior-inferior shank acceleration). These 
windows overlapped, with a new window being fed into the 
model every 15 samples (~8 Hz) to ensure frequent walking 
speed updates. 

The architecture consisted of three 1D convolutional 
layers, each followed by a max pooling layer to reduce 
spatial dimensions and control overfitting (Fig. 1). The 
convolutional layers used a kernel size of 3 and applied 
ReLU (Rectified Linear Unit) activations to introduce non-
linearity, allowing the model to learn complex feature 
interactions within the sensor signals. The primary role of 
these layers was to extract spatiotemporal patterns that are 
critical for walking speed estimation, particularly given the 
cyclic nature of gait data. After the convolutional layers, the 

output was flattened and passed through two fully connected 
(dense) layers with 128 and 64 units, respectively. ReLU 
activations were applied in these layers as well, allowing the 
network to map learned feature representations to walking 
speed. Dropout with a rate of 0.5 was applied to both dense 
layers for regularization, preventing overfitting by randomly 
setting a fraction of the neurons to zero during training. The 
final output layer consisted of a single neuron with no 
activation function, as this is a regression problem, and the 
goal is to predict continuous walking speed values. The 
model was trained using the Adam optimizer, chosen for its 
adaptive learning rate properties and efficiency in handling 
non-stationary objectives. The loss function used is mean 
squared error (MSE), which is suitable for regression tasks. 

This CNN architecture was derived from extensive 
preliminary optimization, which determined the best input 
window size, step size (increment), and hyperparameters for 
walking speed estimation. A key aspect of the transfer 
learning approach in this study was pre-training the 
convolutional layers on large, user-independent datasets, 
which allowed them to learn transferable feature 
representations. During fine-tuning, the dense layers were 
adjusted for task-specific adaptation, enabling the model to 
generalize effectively to new subjects and devices with 
limited data. 

D. Model Training 
The model training process consisted of three key stages: 

pre-training, fine-tuning, and DEP training. This section 
details each stage, highlighting how pre-trained models were 
adapted to the Power Knee (PK) data and how DEP models 
were trained exclusively on PK data. 

1) Pre-training: Two models were pre-trained using the 
AB and OSL datasets to leverage the large, diverse sets of 
data from able-bodied individuals (AB) and transfemoral 
amputees using the Open Source Leg (OSL). Pre-training 
was performed on the full segmented datasets, where data 
were divided into overlapping windows of size N×150×6, 
with N representing the number of windows, 150 being the 
time samples per window, and 6 representing the number of 
sensor channels. 

During pre-training, the model was trained for 10 epochs 
with a batch size of 32, using the Adam optimizer and mean 
squared error as the loss function. The goal was to have the 
convolutional layers learn generalizable feature 
representations from the AB and OSL populations. These 
models are considered user-independent because they are 
trained on a large number of subjects and expected to 
generalize well to new subjects in the same population. 

2) Fine-tuning: During fine-tuning, the first two 
convolutional layers of a pre-trained model were frozen, such 
that additional training with PK data only updated the third 
convolutional layer and all dense layer weights. The layers 
chosen to be frozen during fine-tuning were selected based 
on preliminary optimization of the convolutional layers. 
Training involved 20 epochs, a batch size of 32, and an early 
stopping callback set a patience value of 5. Validation data 
were set to randomly sample 20% of training data. Fine-tuned 
models are referred to as AB-PK (pre-trained on AB data) 
and OSL-PK (pre-trained on OSL data). 

3) DEP Training: In DEP training, the model was trained 
exclusively on PK data, with all weights randomly initialized 
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and no layers frozen. The DEP model learned solely from the 
available PK dataset, without any prior knowledge 
transferred from other datasets. This training process was 
carried out for 20 epochs with a batch size of 32. An early 
stopping mechanism with a patience of 5 epochs was used to 
prevent overfitting, and 20% of the data was set aside for 
validation. Models trained solely on the PK dataset are 
referred to as DEP-PK. 

E. Model Evaluation 
The speed estimation performance of AB-PK, OSL-PK, 

and DEP-PK models were evaluated on both constant and 
dynamic speeds, using varying amounts of PK data during 
fine-tuning and DEP training. The amount of PK training 
data ranged from 0 to 80 gait cycles per speed, including a 
case where all available PK data (ALL) was used. Walking 
speed estimates were smoothed using a moving average 
filter with a window size of 15. 

1) Test on Constant Speeds: Models were evaluated on 
20% of a subject’s constant-speed PK data, meaning that 
20% of the data from each constant speed (ranging from 0.3 
to 0.9 m/s) was held out for testing. This ensured the models 
were assessed on unseen data while maintaining a balanced 
evaluation across all walking speeds. 

2) Test on Dynamic Speeds: Models were evaluated using 
all of a subject’s dynamic-speed PK data. This included 
trials where the subject’s walking speed varied in real-time, 
providing a more real-world scenario for evaluating model 
performance. 

3) Test on Removed Speed: In this evaluation, a specific 
constant walking speed was excluded from the training data 
to assess the models' ability to generalize to a completely 
unseen speed. The models were trained on all other speeds 
and then tested exclusively on the removed speed. This case 
offers insights into how the models handle interpolation and 
extrapolation when encountering a previously unseen speed. 

The testing strategy focused on assessing the models' 
ability to generalize across constant and dynamic speeds, 
with varying amounts of PK data to explore how data 
availability affects performance. 

III. STATISTICAL PLAN 

Model performance was evaluated across three primary 
conditions: Test on Constant Speeds, Test on Dynamic 
Speeds, and Test on Removed Speed. Paired t-tests were 
conducted to compare the RMSE values between different 
models for each condition. The comparisons focused on the 

 
Fig. 3. RMSE trends and tracking performance for AB-PK (red), OSL-PK (blue), and DEP-PK (green) models across different test conditions and gait 

cycles. AB-PK represents fine-tuning of a model initially pre-trained on able-bodied (AB) data, OSL-PK represents fine-tuning of a model pre-trained on 
data from transfemoral amputees using the Open-Source Leg (OSL), and DEP-PK represents a model trained exclusively on data from individuals using the 
Power Knee (PK) prosthesis. Subplots A, B, and C show averaged results from N=7 subjects: A) Test on Constant Speeds evaluates models on 20% of the 
subject's constant-speed PK data (0.3–0.9 m/s), B) Test on Dynamic Speeds assesses models using all dynamic-speed PK data, and C) Test on Removed 
Speed evaluates the models on a constant speed excluded from training. Subplots D and E show Constant Speed Tracking and Dynamic Speed Tracking for 
a single subject using 20 gait cycles for fine-tuning, with estimates filtered using a moving average filter. Error bars in A, B, and C represent standard 
deviations across subjects. Statistical significance (p<0.05) is denoted by letters 'a' (DEP-PK vs AB-PK), 'b' (DEP-PK vs OSL-PK), and 'c' (AB-PK vs 
OSL-PK). 
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two fine-tuned models (AB-PK and OSL-PK) and the DEP 
model. Statistical significance was determined at a threshold 
of p < 0.05, and significant differences in RMSE between 
models are denoted by letters on the corresponding plots 
(Fig. 3A-C): 'a' indicates a significant difference between 
DEP-PK and AB-PK, 'b' between DEP-PK and OSL-PK, 
and 'c' between AB-PK and OSL-PK. 

IV. RESULTS 

In the Test on Constant Speeds condition (Fig. 3A), AB-
PK and OSL-PK without fine-tuning (0 gait cycles) resulted 
in errors of 0.151 and 0.245 m/s RMSE, respectively (poor 
performance). After fine-tuning the models with all available 
PK data (ALL gait cycles), the errors were reduced to 0.041 
m/s RMSE for AB-PK, 0.051 m/s RMSE for OSL-PK, and 
0.042 m/s RMSE for DEP-PK. The paired t-tests revealed 
significant differences in error between fine-tuned models 
and DEP-PK at smaller PK data sets, specifically at 5, 10, 
and 20 gait cycles (p < 0.05). When compared to OSL-PK, 
AB-PK achieved lower RMSE values across all data 
amounts, except at 10 and 50 gait cycles (p < 0.05). 

In the Test on Dynamic Speeds condition (Fig. 3B), AB-
PK and OSL-PK without fine-tuning resulted in errors of 
0.129 and 0.236 m/s RMSE, respectively. After fine-tuning 
the models with all available PK data, the errors were 
reduced to 0.072 m/s RMSE for AB-PK, 0.080 m/s RMSE 
for OSL-PK, and 0.084 m/s RMSE for DEP-PK. Significant 
differences in error were observed between fine-tuned 
models and DEP-PK at 5, 10, and 20 gait cycles (p < 0.05). 
When compared to OSL-PK, AB-PK achieved lower RMSE 
values for all data amounts except at 30 and 50 gait cycles (p 
< 0.05). 

In the Test on Removed Speed condition (Fig. 3C), AB-
PK and OSL-PK without fine-tuning showed errors of 0.123 
and 0.234 m/s RMSE, respectively. With all available PK 
data, fine-tuning reduced the errors to 0.088 m/s RMSE for 
AB-PK, 0.097 m/s RMSE for OSL-PK, and 0.098 m/s 
RMSE for DEP-PK. AB-PK achieved lower errors than 
DEP-PK at 10, 20, 30, and 50 gait cycles (p < 0.05). In 
addition, AB-PK outperformed OSL-PK across all data 
amounts, except at 10 gait cycles (p < 0.05). 

V. DISCUSSION AND CONCLUSION 

Our first hypothesis, that fine-tuned models would 
outperform models trained exclusively on PK data, was 
confirmed. Both AB-PK and OSL-PK models significantly 
outperformed the DEP-PK model at smaller data amounts, 
especially when fewer than 30 gait cycles of training data 
were available. This suggests that transfer learning 
successfully transferred walking speed estimation 
knowledge between domains, allowing the fine-tuned 
models to achieve lower errors with less data. 

The second hypothesis, that fine-tuned models pre-trained 
on OSL data would outperform those pre-trained on AB data 
due to greater similarity in gait mechanics, was not 
supported by our findings. In fact, across both constant and 
dynamic speed conditions, the AB-PK model generally 
outperformed the OSL-PK model in the vast majority of 
cases. The more extensive AB dataset may have captured 

generalized walking patterns that transferred more 
effectively during fine-tuning, even when applied to a 
population with different gait mechanics. This finding 
underscores the utility of AB data in transfer learning for 
prosthetic applications, even when the target population 
involves amputee gait. 

The third hypothesis, that fine-tuning with limited PK data 
would initially outperform models trained exclusively on PK 
data, with the performance gap diminishing as more PK data 
became available, was confirmed. As hypothesized, fine-
tuning with limited PK data led to better initial performance 
compared to DEP models trained solely on PK data. 
However, as more PK data became available, both 
approaches began to converge, with the performance gap 
diminishing, especially after 50 gait cycles, supporting the 
idea that transfer learning compensates for smaller datasets 
in the early stages of training. 

The Test on Removed Speed condition provided further 
evidence of the utility of transfer learning. AB-PK 
consistently outperformed OSL-PK across most data 
amounts, further demonstrating the strong generalization 
capabilities of the AB-PK model on unfamiliar speeds. 

Taken together, the models pre-trained on AB data 
exhibited strong generalization capabilities, even when fine-
tuned with small amounts of PK data. While OSL-PK 
performed comparably, AB-PK’s access to a larger, more 
diverse dataset may have provided a more robust starting 
point for fine-tuning. In a comparable set of experiments 
with DEP models, Bhakta et al. [17] reported RMSE values 
of 0.014 m/s for constant speeds, 0.067 m/s for dynamic 
speeds, and 0.034 m/s for speeds excluded from training. 
Non-machine learning studies involving lower-limb 
prosthetics achieved RMSE values of 0.09 [20], 0.10 [15], 
and 0.036 [29] m/s. Specifically, our lowest post-fine-tuning 
RMSE values for AB-PK were 0.041 m/s for constant 
speeds, 0.072 m/s for dynamic speeds, and 0.088 m/s for 
excluded speeds. This discrepancy is likely due to the 
reduced sensor set used in our study. Bhakta et al. employed 
a knee-ankle prosthesis equipped with a more 
comprehensive sensor suite. Nonetheless, the AB-PK model 
demonstrated strong performance despite the limitations in 
sensor data, underscoring the robustness of transfer learning 
in this application. 

The results provide key insights into model performance, 
the effectiveness of transfer learning across different 
populations (able-bodied vs. amputee) and prosthetic devices 
(OSL vs. PK), as well as the amount of data required to 
achieve high accuracy. This has significant implications for 
real-world prosthesis control systems. By incorporating 
transfer learning into the model development process, 
practitioners can minimize the amount of user-specific data 
required to achieve high-performing speed estimation. This 
approach could reduce the burden of data collection for new 
prosthesis users, making it easier to personalize prosthetic 
devices and improve user experience. 
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